Showing posts with label orifice meter. Show all posts
Showing posts with label orifice meter. Show all posts

Small-Bore Gas Orifice Meter Flow Calculator

This Excel spreadsheet calculates the flowrate from a small-bore gas orifice meter using the ASME MFC-14M-2001 standard. This calculator is valid for pipe diameters of less than 40 mm (other restrictions are given below).



The equations are as follows


  • C is the discharge coefficient. D1 has to be supplied in m
  • D1 and D2 are the diameter of the pipe and orifice respectively (m)
  • A1 and A2 are the cross sectional areas of the pipe and orifice (m2)
  • ΔP is the pressure drop across the orifice (Pa)
  • P1 and Pstd are the upstream pressure and standard pressure
  • T and Tstd are the gas temperature and standard temperature is the 
  • ρ is the gas (kg m-3)
  • μ is the gas viscosity (Pa s)
  • V1 is the liquid velocity in the pipe (m s-1)
  • Re1 is the Reynolds Number in the pipe
  • β is the diameter ratio
  • MW is the molecular weight of the gas (kg mol-1)
  • R is the universal gas constant (8314 J kmol-1 K-1)
  • γ is the specific heat ratio
  • e is the gas expansivity
  • Q is the volumetric flowrate (m3s-1)
  • Qstd is the volumetric flowrate at standard conditions (m3s-1)
The spreadsheet uses the ideal gas law to calculate the gas density (you just have to supply the molecular weight, pressure and temperature of the gas).

Note these restrictions to the validity of the equations
  • Corner Taps: 0.1 < β < 0.8 and 12 mm < D< 40 mm
  • Flange Taps: 0.15 < β < 0.7 and 25 mm < D< 40 mm
  • D2 > 6 mm
  • Re >1000
Additionally, the discharge coefficients are only valid for the tap configurations illustrated below (as specified by the ASME MFC-14M-2001 standard).


You can choose either Corner or Flange taps with a drop-down menu in the spreadsheet, and Excel automatically uses the correct correlation for the discharge coefficient.

These equations (like nearly all orifice flow meter calculations) require an iterative solution. This is easily done with Excel's Goal Seek.  All you have to do is click a button.

Goal Seek uses an initial guess value for the Reynolds Number to calculate the discharge coefficients, and uses this to calculate the flowrate. The calculated flowrate is then used to calculate the Reynolds Number.  Goal Seek then automatically adjusts the guess and calculated values of the Reynolds number until they are the same.


Small-Bore Liquid Orifice Flow Meter Calculator for Excel

This Excel spreadsheet calculates the liquid flowrate from a small-bore orifice meter using the equations defined in ASME MFC-14M-2001. The calculation is iterative, but the spreadsheet is conveniently set up to use Excel's Goal Seek functionality by simply clicking a button.


The equations implemented in the spreadsheet are sourced from ASME MFC-14M-2001 and are given below.


The notation is given below.
  • C is the discharge coefficient. D1 must be supplied in m.  The equation differs for flange taps and corner taps, but a menu in the spreadsheet allows you to pick between the two.
  • D1 and D2 are the diameter of the pipe and orifice respectively (m)
  • A1 and A2 are the cross sectional areas of the pipe and orifice (m2)
  • ΔP is the pressure drop across the orifice (Pa)
  • ρ is the density of the liquid (kg m-3)
  • V1 is the liquid velocity in the pipe(m s-1)
  • Re1 is the Reynolds Number in the pipe
  • β is the diameter ratio
  • μ is the liquid viscosity (Pa s)
  • Q is the volumetric flowrate (m3s-1)
The correlations for the Flange Taps and Corner Taps discharge coefficient are only valid for the following configurations.


The equations are only valid under the following conditions
  • Corner Taps: 0.1 < β < 0.8
  • Flange Taps: 0.15 < β < 0.7
  • 25 mm < D1 < 50 mm
  • 6 mm < D2 
  • Re > 1000
A β of between 0.3 and 0.7 is practical; below this, the pressure drop is too large for economical operation, and above this, the pressure drop is not large enough for an accurate reading.

The Excel spreadsheet will also calculate the static pressure loss and the head loss from a distance D1 upstream and 6 D1 downstream of the orifice.

The spreadsheet is free, and none of the cells are hidden, locked or password protected. Please visit this website regularly for more exclusive, professionally prepared Excel spreadsheets for engineering.

Download Excel Spreadsheet to Calculate Liquid Flow from a Small Bore Orifice Meter